direct product, p-group, metabelian, nilpotent (class 3), monomial, rational
Aliases: C2×C8⋊C22, C8⋊C23, D4⋊2C23, D8⋊3C22, C4.5C24, Q8⋊2C23, C23.50D4, SD16⋊1C22, M4(2)⋊3C22, (C2×D8)⋊11C2, (C2×C8)⋊2C22, C4.64(C2×D4), (C2×SD16)⋊4C2, (C2×C4).135D4, C4○D4⋊4C22, (C2×D4)⋊15C22, (C22×D4)⋊11C2, (C2×M4(2))⋊3C2, (C2×Q8)⋊14C22, C2.27(C22×D4), C22.23(C2×D4), (C2×C4).139C23, (C22×C4).79C22, (C2×C4○D4)⋊11C2, SmallGroup(64,254)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for C2×C8⋊C22
G = < a,b,c,d | a2=b8=c2=d2=1, ab=ba, ac=ca, ad=da, cbc=b3, dbd=b5, cd=dc >
Subgroups: 265 in 149 conjugacy classes, 81 normal (15 characteristic)
C1, C2, C2, C2, C4, C4, C4, C22, C22, C22, C8, C2×C4, C2×C4, C2×C4, D4, D4, Q8, Q8, C23, C23, C2×C8, M4(2), D8, SD16, C22×C4, C22×C4, C2×D4, C2×D4, C2×D4, C2×Q8, C4○D4, C4○D4, C24, C2×M4(2), C2×D8, C2×SD16, C8⋊C22, C22×D4, C2×C4○D4, C2×C8⋊C22
Quotients: C1, C2, C22, D4, C23, C2×D4, C24, C8⋊C22, C22×D4, C2×C8⋊C22
Character table of C2×C8⋊C22
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 2H | 2I | 2J | 2K | 4A | 4B | 4C | 4D | 4E | 4F | 8A | 8B | 8C | 8D | |
size | 1 | 1 | 1 | 1 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | -1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | linear of order 2 |
ρ3 | 1 | -1 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | -1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ5 | 1 | -1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | linear of order 2 |
ρ6 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ7 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ8 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | linear of order 2 |
ρ9 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | 1 | 1 | -1 | linear of order 2 |
ρ10 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | -1 | 1 | -1 | -1 | 1 | 1 | -1 | 1 | 1 | 1 | -1 | 1 | -1 | linear of order 2 |
ρ11 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | -1 | -1 | 1 | -1 | 1 | 1 | -1 | 1 | 1 | -1 | 1 | -1 | 1 | linear of order 2 |
ρ12 | 1 | -1 | 1 | -1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | linear of order 2 |
ρ13 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | 1 | -1 | linear of order 2 |
ρ14 | 1 | -1 | 1 | -1 | 1 | -1 | -1 | -1 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | 1 | -1 | linear of order 2 |
ρ15 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | -1 | 1 | linear of order 2 |
ρ16 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | -1 | 1 | linear of order 2 |
ρ17 | 2 | 2 | 2 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | -2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ18 | 2 | 2 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ19 | 2 | -2 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ20 | 2 | -2 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | -2 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ21 | 4 | 4 | -4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C8⋊C22 |
ρ22 | 4 | -4 | -4 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C8⋊C22 |
(1 13)(2 14)(3 15)(4 16)(5 9)(6 10)(7 11)(8 12)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)
(2 4)(3 7)(6 8)(10 12)(11 15)(14 16)
(1 5)(3 7)(9 13)(11 15)
G:=sub<Sym(16)| (1,13)(2,14)(3,15)(4,16)(5,9)(6,10)(7,11)(8,12), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16), (2,4)(3,7)(6,8)(10,12)(11,15)(14,16), (1,5)(3,7)(9,13)(11,15)>;
G:=Group( (1,13)(2,14)(3,15)(4,16)(5,9)(6,10)(7,11)(8,12), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16), (2,4)(3,7)(6,8)(10,12)(11,15)(14,16), (1,5)(3,7)(9,13)(11,15) );
G=PermutationGroup([[(1,13),(2,14),(3,15),(4,16),(5,9),(6,10),(7,11),(8,12)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16)], [(2,4),(3,7),(6,8),(10,12),(11,15),(14,16)], [(1,5),(3,7),(9,13),(11,15)]])
G:=TransitiveGroup(16,89);
C2×C8⋊C22 is a maximal subgroup of
C8⋊C22⋊C4 M4(2).47D4 C42.5D4 M4(2).48D4 C42⋊9D4 C42.129D4 M4(2)⋊D4 M4(2)⋊5D4 M4(2).4D4 M4(2).5D4 M4(2).8D4 M4(2).10D4 C42.275C23 C24.177D4 C24.104D4 C24.105D4 C4○D4⋊D4 (C2×Q8)⋊16D4 (C2×D4)⋊21D4 C42.12C23 C42.211D4 C42.444D4 C42.446D4 C42.14C23 C42.15C23 C42.18C23 M4(2).37D4 D8⋊10D4 D8⋊5D4 D8⋊C23
C8⋊pD4⋊C2: M4(2)⋊14D4 M4(2)⋊16D4 M4(2)⋊7D4 M4(2)⋊9D4 M4(2)⋊10D4 M4(2)⋊11D4 D8⋊9D4 SD16⋊D4 ...
C2×C8⋊C22 is a maximal quotient of
C24.177D4 C24.105D4 C42.211D4 C42.444D4 C42.219D4 C42.448D4 C24.183D4 C24.117D4 C42.225D4 C42.450D4 C42.227D4 C42.228D4 C42.230D4 C42.232D4 C42.233D4 C42.240D4 C42.243D4 M4(2)⋊5Q8 C24.126D4 C42.263D4 C42.279D4 C42.280D4 C42.282D4 C42.286D4 C42.287D4 C42.290D4 C42.291D4 C42.302D4 C42.45C23 C42.473C23 C42.479C23 C42.57C23 C42.494C23 C42.507C23 C42.508C23 C42.509C23 C42.514C23 D8⋊4Q8 SD16⋊2Q8
C8⋊pD4⋊C2: M4(2)⋊14D4 M4(2)⋊7D4 C42.255D4 C42.257D4 C42.259D4 C42.261D4 C24.121D4 C24.125D4 ...
Matrix representation of C2×C8⋊C22 ►in GL6(ℤ)
-1 | 0 | 0 | 0 | 0 | 0 |
0 | -1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
-1 | -2 | 0 | 0 | 0 | 0 |
1 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 2 | 0 |
0 | 0 | 1 | 0 | 1 | 1 |
0 | 0 | 0 | -1 | -1 | 0 |
0 | 0 | 0 | 0 | -1 | 0 |
-1 | 0 | 0 | 0 | 0 | 0 |
1 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 1 | -1 | 0 | 0 |
0 | 0 | -1 | 0 | 0 | -1 |
0 | 0 | -1 | 0 | -1 | 0 |
-1 | 0 | 0 | 0 | 0 | 0 |
0 | -1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | -1 | 0 | -1 | 0 |
0 | 0 | -1 | 0 | 0 | -1 |
G:=sub<GL(6,Integers())| [-1,0,0,0,0,0,0,-1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[-1,1,0,0,0,0,-2,1,0,0,0,0,0,0,1,1,0,0,0,0,0,0,-1,0,0,0,2,1,-1,-1,0,0,0,1,0,0],[-1,1,0,0,0,0,0,1,0,0,0,0,0,0,1,1,-1,-1,0,0,0,-1,0,0,0,0,0,0,0,-1,0,0,0,0,-1,0],[-1,0,0,0,0,0,0,-1,0,0,0,0,0,0,1,0,-1,-1,0,0,0,1,0,0,0,0,0,0,-1,0,0,0,0,0,0,-1] >;
C2×C8⋊C22 in GAP, Magma, Sage, TeX
C_2\times C_8\rtimes C_2^2
% in TeX
G:=Group("C2xC8:C2^2");
// GroupNames label
G:=SmallGroup(64,254);
// by ID
G=gap.SmallGroup(64,254);
# by ID
G:=PCGroup([6,-2,2,2,2,-2,-2,217,650,1444,730,88]);
// Polycyclic
G:=Group<a,b,c,d|a^2=b^8=c^2=d^2=1,a*b=b*a,a*c=c*a,a*d=d*a,c*b*c=b^3,d*b*d=b^5,c*d=d*c>;
// generators/relations
Export